Атомная электростанция: устройство и влияние на окружающую среду

Если у вас есть статья, заметка или обзор, которыми вы хотите поделиться с аудиторией нашего сайта, присылайте информацию на: aleksandr.belozerov@gmail.com. За статьи платим деньги!

АЭС: от прошлого до настоящего

Атомная электростанция – предприятие, представляющее собой совокупность оборудования и сооружений для выработки электрической энергии. Специфика данной установки заключается в способе получения тепла. Необходимая для выработки электроэнергии температура возникает в процесса распада атомов.

Роль топлива для АЭС выполняет чаще всего уран с массовым числом 235 (235U). Именно потому, что этот радиоактивный элемент способен поддерживать цепную ядерную реакцию, он используется на атомных электрических станциях, а также применяется в ядерном оружии.

Страны с наибольшим количеством АЭС

Крупнейшие АЭС
Крупнейшие АЭС мира

На сегодняшний день в 31 стране мира функционируют 192 атомные электростанции, использующие 451 энергетический ядерный реактор общей мощностью 394 ГВт. Подавляющее большинство АЭС находится в странах Европы, Северной Америки, Дальневосточной Азии и на территории бывшего СССР, в то время как в Африке их почти нет, а в Австралии и Океании их нет вообще. Еще 41 реактор не производил электричества от 1,5 до 20 лет, причём 40 из них находятся в Японии.

За последние 10 лет в мире в эксплуатацию было введено 47 энергоблоков, почти все из них находятся либо в Азии (26 — в Китае), либо в Восточной Европе. Две трети строящихся на данный момент реакторов приходятся на КитайИндию и Россию. КНР осуществляет самую масштабную программу строительства новых АЭС, ещё около полутора десятка стран мира строят АЭС или развивают проекты их строительства.

Помимо США, к списку наиболее продвинутых в области ядерной энергетики стран относят:

  • Францию;
  • Японию;
  • Россию;
  • Южную Корею.

В 2007 году Россия приступила к строительству первой в мире плавучей АЭС, позволяющей решить проблему нехватки энергии в отдалённых прибрежных районах страны[12]. Строительство столкнулось с задержками. По разным оценкам, первая плавающая АЭС заработает в 2018—2019 годах.

Несколько стран, включая США, Японию, Южную Корею, Россию, Аргентину, ведут разработки мини-АЭС с мощностью порядка 10—20 МВт для целей тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе — и индивидуальных домов. Предполагается, что малогабаритные реакторы (см., например, Hyperion АЭС) могут создаваться с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества[13]. Строительство одного малогабаритного реактора CAREM25 ведётся в Аргентине. Первый опыт использования мини-АЭС получил СССР (Билибинская АЭС).

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС
Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

За данным корпусом следует зал. В нем обустроены парогенераторы и находится основная турбина. Сразу же за ними располагаются конденсаторы, а также линии передачи электричества, выходящие за границы территории.

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах.

Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C[7]). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Защитные механизмы АЭС

Все атомные электростанции в обязательном порядке оснащаются комплексными системами безопасности, например:

  • локализующие – ограничивают распространение вредоносных веществ в случае аварии, повлекшей выброс радиации;
  • обеспечивающие – подают определённое количество энергии для стабильной работы систем;
  • управляющие – служат для того, чтобы все защитные системы функционировали нормально.

Кроме того, реактор может аварийно остановиться в случае чрезвычайной ситуации. В этом случае автоматическая защита прервет цепные реакции, если температура в реакторе продолжит подниматься. Эта мера впоследствии потребует серьезных восстановительных работ для возвращения реактора в строй.

После того как в Чернобыльской АЭС произошла опасная авария, причиной которой оказалось несовершенство конструкции реактора, стали больше внимания уделять защитным мерам, а также провели конструкторские работы для обеспечения большей надежности реакторов.

Катастрофа ХХІ века и её последствия

"Фукусима-1"
«Фукусима-1»

В марте 2011 года северо-восток Японии поразило землетрясение, вызвавшее цунами, которая в итоге повредила 4 из 6 реакторов АЭС «Фукусима-1».

Менее чем через два года после трагедии официальное количество погибших в катастрофе превышало 1500 человек, в то время как 20 000 человек до сих пор считаются пропавшими без вести, а еще 300 000 жителей были вынуждены оставить свои дома.

Были и пострадавшие, которые оказались не способны покинуть место происшествия из-за огромной дозы излучения. Для них была организована незамедлительная эвакуация, продолжавшаяся 2 дня.

Тем не менее, с каждым годом методы предотвращения аварий на АЭС, а также нейтрализации ЧП совершенствуются – наука неуклонно идёт вперёд. Тем не менее, будущее явно станет временем расцвета альтернативных способов получения электроэнергии — в частности, логично ожидать появления в ближайшие 10 лет орбитальных солнечных батарей гигантского размера, что вполне достижимо в условиях невесомости, а также прочих, в том числе революционных технологий в энергетике.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них